

Welcome to py-moneyed’s documentation!

These are the docs for py-moneyed 3.0. Check the Change log for
significant changes.

Contents:

	Installation

	Usage
	Search by Country Code

	Get country names

	List all currencies

	Formatting

	Contributing to py-moneyed
	Testing

	Change log
	Unreleased - TBA

	3.0 (2022-11-27)

	2.0 (2021-05-26)

	1.2 (2021-02-23)

	1.1 (2021-01-15)

	1.0 (2021-01-09)

	0.8 (2018-11-19)

	0.7 (2017-05-08)

	0.6 and earlier

Indices and tables

	Index

	Module Index

	Search Page

Installation

py-moneyed can be installed with pip:

pip install py-moneyed

Usage

The Money class is instantiated with:

	An amount which can be of type int, string, float, or Decimal. It will be
converted to a Decimal internally. Therefore, it is best to avoid float
objects, since they do not convert losslessly to Decimal.

	A currency, as a Currency object, or as a string which is a
three-capital-letters ISO currency code (e.g. 'USD', 'EUR' etc), which
will be converted to a Currency object.

For example,

from moneyed import Money
sale_price_today = Money(amount='99.99', currency='USD')

You then use Money instances as a normal number. The Money class provides
operators with type checking, matching currency checking, and sensible
dimensional behavior, e.g. you cannot multiply two Money instances, nor can you
add a Money instance to a non-Money number; dividing a Money instance by another
results in a Decimal value, etc.

The Currency class is also provided. All ISO 4217 currencies are
available by importing from the moneyed module by their 3-letter code, as
pre-built Currency objects.

You can also pass in the arguments to Money as positional arguments. So
you can also write:

>>> from moneyed import Money, USD
>>> price = Money('19.50', USD)
>>> price
Money('19.50', 'USD')

>>> price.amount
Decimal('19.50')

>>> price.currency
USD

>>> price.currency.code
'USD'

If you want to get the amount in sub units (ISO 4127 compatible) you can do:

>>> from moneyed import Money, USD
>>> price = Money('19.50', USD)
>>> price.get_amount_in_sub_unit()
1950

>>> price = Money('123.456', USD)
>>> price.get_amount_in_sub_unit()
12345

Currency instances have a zero property for convenience. It returns a cached
Money instance of the currency. This can be helpful for instance when summing up a
list of money instances using the builtin sum().

>>> from moneyed import Money, USD
>>> currency = USD
>>> items = (Money('19.99', currency), Money('25.00', currency))

>>> sum(items, currency.zero)
Money('44.99', 'USD')

>>> sum((), currency.zero)
Money('0', 'USD')

Search by Country Code

In order to find the ISO code associated with a country, the function
get_currencies_of_country() can be used. This function takes the ISO
country code (case insensitive) as the argument and returns the associated
currency object(s) in a list. If a country with the given name is not found the
function returns an empty list. The code below demonstrates this:

>>> from moneyed import get_currencies_of_country
>>> get_currencies_of_country("IN")
[INR]
>>> get_currencies_of_country("BO")
[BOB, BOV]
>>> get_currencies_of_country("XX")
[]

Get country names

Currency.country_codes returns a list of ISO 3166 country codes [https://en.wikipedia.org/wiki/List_of_ISO_3166_country_codes]. You can
convert these to names using the function get_country_name, which must be
passed a ISO 2-letter code and a locale code:

>>> from moneyed import ZMW, get_country_name
>>> ZMW.country_codes
['ZM']
>>> get_country_name('ZM', 'en')
'Zambia'

List all currencies

You can get all installed currencies as below:

>>> from moneyed import list_all_currencies
>>> list_all_currencies()
[ADP, AED, AFA, ...]

The result is a list of Currency objects, sorted by ISO code.

Formatting

You can print Money object as follows:

>>> from moneyed.l10n import format_money
>>> format_money(Money(10, 'USD'), locale='en_US')
'$10.00'

Note that you need to specify locale or you will get the system default,
which will probably not be what you want. For this reason, it is recommended to
always provide the locale argument, and you may well want to add your own
wrappers around this function to supply your project specific defaults.

This function is a thin wrapper around babel.numbers.format_currency [http://babel.pocoo.org/en/latest/api/numbers.html#babel.numbers.format_currency].
See those docs for other arguments that can be specified to control the
formatting of the number. By default, Babel will apply definitions of how to
format currencies that have been derived from the large CLDR database [http://cldr.unicode.org/].

If you do str() on a Money object, you will get the same behaviour as
format_money(), but with no options supplied, so you will get the system
default locale.

Contributing to py-moneyed

If you would like to contribute to py-moneyed, the recommended workflow is:

	First raise an issue on GitHub for any proposal or idea that might be
controversial and get feedback from the maintainers. If you have something
that is an obvious bug (a typo in the docs, for example), you can skip this
step.

	Fork the project and checkout your fork onto your development machine.

	Create a virtualenv of some kind for development (venv [https://docs.python.org/3/library/venv.html], virtualenv [https://virtualenv.pypa.io/en/stable/] or
virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/]) and install py-moneyed into it:

python setup.py develop

	Optional, but highly recommended to save time later - install pre-commit [https://pre-commit.com/] hooks:

pip install pre-commit
pre-commit install

	Create a git branch for your changes, starting from master

	Fix the bug or implement your changes, being sure to:

	Add tests and docs

	Run the test suite (below)

	Push your changes to your GitHub repo and submit a pull request.

Testing

To run the test suite, first install tox (into your virtualenv):

pip install tox

Run the tests using tox:

tox -e py310

You can run the test suite on all supported environments using tox [https://tox.readthedocs.io/en/latest/]
(recommended). If you do not have all versions of Python that are used in
testing, you can use pyenv [https://github.com/pyenv/pyenv] to install them, and you may benefit from the
additional plugin pyenv-implict [https://github.com/concordusapps/pyenv-implict].

The py-moneyed package is tested against Python 3.7 - 3.11 and PyPy 3.

Change log

Significant or incompatible changes listed here.

Unreleased - TBA

3.0 (2022-11-27)

	Added SLE & VED currencies.

	Removed support for Python 3.6.

	Added support for Python 3.10 & 3.11.

2.0 (2021-05-26)

	Dropped support for Python 2.7 and 3.5 and PyPy 2.

	Added pyupgrade pre-commit hook.

	Added black pre-commit hook and reformatted codebase.

	Updated pre-commit hooks.

	Replaced custom flake8, isort and check-manifest Github Action jobs with a generic
pre-commit job.

	Dropped the moneyed.localization module that was deprecated and announced for
removal in 1.0.

	Added type hints along with a mypy pre-commit hook.

	Added action for building and publishing releases, along with the
check-github-workflows pre-commit hook for validating Github Action workflow files.

	Removed undocumented DEFAULT_CURRENCY and DEFAULT_CURRENCY_CODE constants, and
change to make instantiating Money without providing a currency a type error. This
used to result in an object with a made-up "XYZ" currency, which could lead to
surprising behaviors and bugs.

	Added zero property to Currency to conveniently access the zero value of a
given currency.

	Moved to use setuptool’s declarative packaging config and PEP 517 isolated builds.

	Removed requirements files and instead specified test requirements using extras.

1.2 (2021-02-23)

	Money.__add__ returns NotImplemented instead of raising an exception when another operand has unsupported type.

1.1 (2021-01-15)

	Changed the numeric attribute values to None for currencies that don’t have assigned ISO numeric codes: IMP, TVD, XFO, XFU.

	Restored the previous definition for the XXX currency, including its name and countries attributes.

	Fixed get_currency returning obsolete currencies.

1.0 (2021-01-09)

	Dropped official support for Python 2.6, 3.2, 3.3, 3.4 (mainly because
our test tools don’t support them any more).

	Added support for getting amount in sub units (fixed point)

	Format Money instances using CLDR and Babel. This is a large change with lots of parts.
Many thanks to @pooyamb for all the hard work that went into this and other
related changes.

	Added new moneyed.l10n module, containing a new format_money
function. This is a very thin wrapper around babel.numbers.format_currency [http://babel.pocoo.org/en/latest/api/numbers.html#babel.numbers.format_currency]
and has all the same options. This allows us to get the official CLDR
formats for currencies, in all the different locales.

See docs in README.

Note especially that you need to specify locale (e.g.
locale="en_US"), or you will get the LC_NUMERIC default.

	Deprecated the format_money function in moneyed.localization. There
is no immediate plan to remove, but it should not be relied on. Also, this
function relies on our own manually entered data for formatting of
currencies in different locales. This data is very incomplete and will not
be updated any more.

So you need to use moneyed.l10n.format_money instead now.

If you were relying on the decimal_places argument to the old function,
there is no exact equivalent in the new format_money function, but see
the decimal_quantization option (documented in
babel.numbers.format_currency [http://babel.pocoo.org/en/latest/api/numbers.html#babel.numbers.format_currency])

	Money.__str__ (Money.__unicode__ on Python 2) now uses new
format_money with the default locale LC_NUMERIC, which can produce
different results from the old function. Use the new format_money to control
output.

	On Python 2, Money.__str__ (bytestring) output has changed to be more
basic. You should use the new format_money function to control output.

	Get currency names from Babel data. Several changes, including:

	For all built-in currencies, Currency.name now comes from Babel (“en_US”
locale). This means there have been various corrections to currency names.

If you pass a non-None name to the Currency constructor, you can
still specify any name you want.

	Currency.get_name(locale) has been added.

	Get currency ‘countries’ from Babel data. Several changes, including:

	Currency.countries now sources from Babel, so some names may be different.

	Currency.country_codes has been added.

	Currency.countries is deprecated, because it is not the most useful form
for the data (e.g. upper cased strings, and names in US English only). It is
recommended to use Currency.country_codes and convert to names using
get_country_name.

	Changed the repr of Money so that eval(repr(money_object) ==
money_object (at least in some environments, and most of the typical ones).
See Python docs on __repr__ [https://docs.python.org/3/reference/datamodel.html?highlight=__repr__#object.__repr__]
for rationale. Thanks @davidtvs [https://github.com/davidtvs]. This could
be backwards incompatible if you were relying on the old output of repr().

	Added list_all_currencies() utility function.

0.8 (2018-11-19)

	Money.round([ndigits]) added.
Uses decimal.ROUND_HALF_EVEN by default, but this can be overridden
by setting rounding in the decimal context before calling Money.round().

	Various fixes/additions for different locales

	Division support on Python 2

	DEFAULT locale is now used as a fallback to return a currency symbol if your
chosen locale has no symbol set for that currency, rather than just returning
the currency code.

0.7 (2017-05-08)

	Money.__str__ changed under Python 2 to use only ASCII characters.
This means that currency codes, rather than symbols, are used.

	Lots of additional locales supported out of the box.

	Python 3.5 supported

	Fixed #70 - format_money error when the locale is not in the formatting
definitions: the default is not used.

	Various other bug fixes

0.6 and earlier

	See VCS logs.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to py-moneyed’s documentation!

 		
 Installation

 		
 Usage

 		
 Search by Country Code

 		
 Get country names

 		
 List all currencies

 		
 Formatting

 		
 Contributing to py-moneyed

 		
 Testing

 		
 Change log

 		
 Unreleased - TBA

 		
 3.0 (2022-11-27)

 		
 2.0 (2021-05-26)

 		
 1.2 (2021-02-23)

 		
 1.1 (2021-01-15)

 		
 1.0 (2021-01-09)

 		
 0.8 (2018-11-19)

 		
 0.7 (2017-05-08)

 		
 0.6 and earlier

_static/minus.png

_static/plus.png

_static/file.png

